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Abstract
New methods are presented for microscopically characterizing defects in
materials in terms of local energy and stress fields calculated at the first-
principles level of theory. These fields provide a quantitative measure
of the local disturbance created by defect-induced electronic and atomic
inhomogeneities in a solid. The local stress density σαβ(r) is computed
by explicitly evaluating the strain derivative of a suitably defined energy
density field, ε(r). Although ε(r) and σαβ(r) are defined only up to a gauge
transformation, they yield the correct total energy and the average macroscopic
stress tensor, respectively, when integrated over the entire volume of the
underlying unit cell. In systems with defects, it is shown that well-defined
averages of ε(r) and σαβ(r) can be constructed by restricting the domain of
integration to smaller volumes, which are integral multiples of the Wigner–Seitz
cell for the supercell containing the defect. These fields can provide important
insights into the nature of atomic-scale defects. Explicit expressions for ε(r)

andσαβ(r) are derived within the density functional plane-wave pseudopotential
formalism. For the test cases of bulk Al with a vacancy and a Al(001) surface,
it is shown that the averaged forms of ε(r) and σαβ(r) help characterize the
defects in a physically meaningful manner. Potential applications of ε(r) and
σαβ(r) to the characterization of surface relaxations and to multi-scale studies
of materials are suggested.

1. Introduction

Defects, and their dynamics, play a crucial role in determining mechanical and diffusion-
dominated materials properties. Since the local chemistry and coordination environment at a
defect are vastly different from those in the defect-free bulk region of the material, a detailed,
microscopic analysis of key properties in the vicinity of the defect is essential to understanding
observed macroscopic materials behaviour.

In traditional electronic structure calculations, periodic supercells are frequently used to
study defects. The supercell contains the defect and sufficient surrounding bulk material so that
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the defect is well separated from its periodic images. A characteristic feature of such supercell
methods is that they result in quantities that are properties of the supercell as a whole—
e.g., the total energy and the average macroscopic stress. There is thus an emphasis on a
global description, with individual contributions from different parts of the material becoming
inextricably combined in the calculated global quantities. The purpose of this study is to
introduce new analysis tools within the framework of electronic structure supercell methods
to enable a microscopic characterization of the inhomogeneities at defects in periodic solid-
state systems. These methods lead to a decomposition of the integrated global quantities into
spatially varying fields. We show that the resulting fields, when re-integrated over appropriate
volumes within the supercell, effectively capture those features specific to a defect, yielding a
detailed local picture of the defect.

Recently, Chetty and Martin [1] introduced the concept of a spatially varying energy
density field, ε(r), which is local in real space, and whose integral over the volume of the
supercell is the total energy per supercell. Since the total energy within the pseudopotential
formalism is itself comprised of separate contributions, some of which are non-local in
nature [2], and since ε(r) can be defined only up to an additive scalar field (which itself
integrates to zero within the supercell), there is an inherent non-uniqueness associated with
any such form of the local energy density. Thus, while the integral of ε(r) over the volume
of the entire supercell is a well-defined quantity, its integral over parts of the supercell is, in
general, ill-defined. Despite this non-uniqueness problem, Chetty and Martin [1, 3] showed
that one can arrive at physically meaningful results by integrating the local energy density over
a portion of the supercell, specifically the surface region. They demonstrated that the local
energy density helps partition space into a surface region and a bulk region, with the energy
density deviating from its bulk value in the surface region in an understandable manner. In the
present study, we extend the approach of Chetty and Martin [1] from surfaces to more general
defects, and make a formal identification of those parts of the supercell over which the integral
of ε(r) will result in a well-defined local field.

A quantity which is closely related conceptually to the local energy density is the local
stress density (also known as the local stress tensor field), σαβ(r), which is defined as any tensor
field whose divergence is the vector force field [4–9]. Like ε(r), σαβ(r) is inherently non-
unique in nature since it can be specified only up to the addition of the curl of an arbitrary tensor
field (this leaves the force density, a physical observable, invariant). The stress tensor field
results in the average macroscopic stress tensor (a ‘global’ property) when integrated over the
volume of the supercell [8,9]. The stress density is composed of two contributions [4–9]: one
due to the momentum flux density arising from the kinetic energy of interacting electrons, and
the other, called the configurational stress density, arising from the potential of interaction of
the electrons and the nuclei. The first contribution is inherently quantum mechanical in nature,
and the traditional approach for deriving expressions for it starts with the local momentum
density operator and the Heisenberg equation of motion, and results in complicated operator
expressions [7–9]. The configurational part of the stress density is defined in terms of the
internal electric fields resulting from the nuclear and electronic distributions [4–9], in direct
analogy with the Maxwell stress tensor of classical electromagnetism [10]. For very simple
systems, explicit expressions for both the momentum flux density and configurational terms
have been derived [5–7]. For instance, expressions for the stress tensor field in the H atom and
H2 molecule have been given by Feynman [5] and Deb and Bamzai [6], respectively. Folland [7]
has derived formal operator expressions particularly suited to one-electron approximations, and
has used these formal expressions to determine explicit forms for σαβ(r) in the isolated Ne and
Ar atoms [7] within the local density approximation (LDA) of density functional theory (DFT)
and at the Hartree–Fock level of theory. Formal operator expressions for more complicated
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many-particle systems (many-atom clusters, periodic systems, systems with atomic cores
represented by pseudopotentials) have also been derived [8, 9]; however, these expressions
have proved too cumbersome for practical use. Here, we develop an alternative approach
to the derivation of an explicit expression for the stress tensor field of a general periodic
system to be used in plane-wave pseudopotential supercell calculations [2], within the LDA
of DFT [11]. Rather than adopt the traditional equation of motion procedure which leads to
operator expressions for σαβ(r) [4–9], we derive an explicit analytic expression for σαβ(r) by
directly taking the strain derivative of the local energy density. Our procedure is schematically
illustrated in figure 1. Since the average macroscopic stress is the strain derivative of the
total energy per unit-cell volume [8, 12, 13] (denoted by path A in figure 1), the stress tensor
field, σαβ(r), is evidently the strain derivative of ε(r) (path C in figure 1). The derivation of
an expression for the stress tensor field therefore depends crucially on our ability to define
the energy density (path B in figure 1). In the present study, we use a modified form of the
energy density proposed earlier by Chetty and Martin [1]. The new form for ε(r), and the
resulting σαβ(r) facilitate direct contact with previously derived pseudopotential-based density
functional expressions for the corresponding macroscopic observables: the total energy [2]
and average macroscopic stress tensor [8, 12, 13], respectively.

As defined, ε(r) and σαβ(r) exhibit variations on the scale of sub-atomic dimensions
(the latter is referred to as the microscopic stress density in the literature [4–9], reflecting
this property). Their corresponding (unique) macroscopic analogues are the integrals of these
microscopic quantities over the volume of the unit cell. In order to bridge the length-scale gap
between these two extremes, we define the integrated local fields, ε̄(r) and σ̄αβ(r), as integrals
of ε(r) and σαβ(r), respectively, over a Wigner–Seitz (WS) cell (or integral multiples of the
WS cell). (The integrated local fields are also shown in figure 1 to complete the relationships
between the global, local and integrated local quantities.) Thus, while ε(r) and σαβ(r) are
the energy and stress densities at a point r in space, ε̄(r) and σ̄αβ(r) are the corresponding
properties averaged over a WS cell centred at the reference point r. As a result, for defect-free
periodic systems, ε̄(r) and σ̄αβ(r) reduce to the corresponding macroscopic bulk quantities. In
defect calculations using supercells much larger than the WS cell, the integrated local quantities
capture the local effects due the defect in the neighbourhood of the defect, but far away from
the defect, they recover their defect-free bulk values. To demonstrate the application of these
local concepts to the microscopic characterization of defects, we consider two test cases: an
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isolated vacancy in bulk Al, and an Al(001) surface. The surface calculation leads to some
important observations regarding the potential use of σ̄αβ(r) to help understand the driving
force behind anomalous outward surface relaxations seen in some clean surfaces [14].

The paper is organized as follows. In section 2, we discuss the general considerations
governing the construction of physically meaningful local fields. In section 3, we review
a reformulation (derived earlier by Chetty and Martin [1]) of the usual reciprocal-space
expression for the total energy [2]; this alternative formulation provides a more natural starting
point for the construction of the local energy field, ε(r). Expressions for ε(r) and ε̄(r) are
derived, and the approach of Chetty and Martin [1] is extended to treat more general defects;
it is also shown that ε̄(r) exhibits the correct limiting behaviour in the defect-free case. In
section 4, we give the expression for the average macroscopic stress tensor derived from
the reformulated total energy expression of section 3; we then derive an expression for the
non-unique microscopic symmetric stress tensor field, σαβ(r), and discuss its properties. In
section 5, we present results for defect-free bulk Al, bulk Al with a vacancy and a seven-layer
Al(100) slab. We discuss implications and potential applications of the local fields concept in
section 6 and conclude with a brief summary in section 7.

2. General considerations governing the construction of local fields

As mentioned in the Introduction, the local energy density, ε(r), is required to satisfy the
following important constraint:

Etot =
∫

�cell

ε(r) d3r, (1)

where Etot is the total energy per supercell of the system and �cell is the volume of the periodic
supercell. ε(r) is thus a scalar quantity like the charge density, but unlike the latter, it is not a
physical observable. Clearly, the construction of ε(r) is possible only if each contribution to
Etot can be written as an integral of a local function in real space, so that each integrand can be
identified as a separate and legitimate contribution to ε(r). However, not all terms in the usual
total energy expression within the pseudopotential approximation [2] are of this form. This
problem is handled by reformulating the total energy expression (section 3.1), and defining an
integrated local energy density, ε̄(r) (later in this section).

The density functional total energy (in Rydberg atomic units) within the LDA for a periodic
array of ions (represented by non-local pseudopotentials) embedded in a charge-compensating
valence electron gas is given by [2]

Etot = −
∑
nk

fnk

∫
ψ∗

nk(r) ∇2ψnk(r) d3r +
1

2

∫
�cell

∫
�cell

2ρe(r)ρe(r′)
|r − r′| d3r d3r′

+
∫

�cell

εXC(ρe(r))ρe(r) d3r +
∫ ∑

nkj l

ψ∗
nk(r)V nl

j l (|r − τ j |)℘lψnk(r) d3r

+
∫

�cell

∑
j

V loc
ion,j (|r − τ j |)ρe(r) d3r +

1

2

∑
j �=j ′

2ZjZj ′

|τ j − τ j ′ | , (2)

where fnk and ψnk(r) are the occupation number and the Kohn–Sham wavefunction,
respectively, for the nth band and first-Brillouin-zone (IBZ) wavevector k, ρe(r) is the valence
electronic charge density, εXC(ρe(r)) is the exchange–correlation energy per electron of a
homogeneous electron gas of density ρe, V nl

jl (r) is the lth component of the non-local part of
the pseudopotential of ion j , ℘l is the projection operator for angular momentum l, V loc

ion,j (r) is
the local part of the pseudopotential of ion j and Zj is the valence charge of ion j at location τ j .
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The total non-interacting electronic kinetic energy is given by the first term. There are two
possible choices for the kinetic energy component of the energy density [1,15]: the symmetric
(− ∑

nk fnk|∇ψnk(r)|2 d3r) and the antisymmetric (− ∑
nk fnkψ

∗
nk(r) ∇2ψnk(r) d3r) forms,

both of which integrate to the total electronic kinetic energy. In most situations the two forms
are equivalent. However, in some pathological cases ∇2ψnk(r) may have singularities even if
ψnk(r) is well behaved [1]; in such cases, the antisymmetric form of the kinetic energy density
may be undefined at some places. Although most situations of interest to us will not exhibit
such pathological features, we follow Chetty and Martin [1] in choosing the symmetric form.

The electronic electrostatic energy, the exchange–correlation energy and the electron–
pseudopotential interaction energy for the local part of the pseudopotential (the second, third
and the fifth terms of equation (2), respectively) naturally adapt themselves to the construction
of energy density components, since they can each be expressed as an integral of the product of
ρe(r) with a local function v(r), where v(r) is the electronic Hartree potential, the exchange–
correlation energy per electron and the local part of the ionic pseudopotential, respectively,
in the three cases. Thus, contributions to ε(r) for these cases are of the form ρe(r)v(r)

(or
∑

G,G′ ρ∗(G)e−iG·rv(G′)eiG′·r in reciprocal space, where G and G′ are reciprocal-lattice
vectors). Chetty and Martin [1], on the other hand, chose a Maxwell form [10] for the
electrostatic component of the energy density. While our form for the electrostatic component
of the energy density is motivated by the fact that it enables us to make direct contact
with the corresponding term in the density functional total energy expression, Chetty and
Martin [1] use the analogy with classical electromagnetic theory where the (Maxwell) energy
density due to a distribution of charges is expressed in terms of the electric field due to the
charge distribution. (The Maxwell energy density for the electrostatic component is given
by ζ2(r)/(8π), where the electric field vector ζ(r) is the gradient of the Hartree potential,
ζ(r) = −∇

∫
ρe(r)/|r − r′| d3r.) Both the choices result in the total electrostatic energy

when integrated over the volume of the supercell; the difference between the two forms is thus
an example of a gauge term which integrates to zero over an appropriate integration volume.

The non-local component of the total energy due to the pseudopotential (the fourth term
in equation (2)) does not adapt itself naturally to our procedure for constructing ε(r). We
have therefore chosen to calculate this term for each ionic site j , and to localize it as a
Dirac delta function at that site. That is, we rewrite the fourth term in equation (2) as∫
�cell

∑
j Enl

j δ(r − τ j ) d3r, where

Enl
j =

∫ ∑
nkl

ψ∗
nk(r)V nl

j l (|r − τ j |)℘lψnk(r) d3r. (3)

Enl
j is thus the non-local pseudopotential contribution to the total energy due to ion j and

we identify
∑

j Enl
j δ(r − τ j ) as the total non-local pseudopotential contribution to ε(r). By

localizing an inherently non-local component, we are introducing an error in ε(r). However,
later in this section we will show that the physically significant quantity useful in analysing
defects is actually ε̄(r), which is the integral of ε(r) over a volume that is an integer multiple
of the WS cell. Since the non-locality due to the pseudopotential is restricted to lying within
a WS cell, ε̄(r) is insensitive to the details of the localization procedure.

The last term in equation (2) is the electrostatic ion–ion interaction energy, which, like
the non-local part of the pseudopotential contribution to the total energy, cannot be expressed
immediately as an integrated quantity. Nor is a localization procedure similar to the one adopted
to write down the non-local pseudopotential contribution to ε(r) justified, due to the long-range
nature of this interaction. Hence, we regroup terms in the total energy expression of equation (2)
(section 3.1) so that the ion–ion interaction component can be naturally incorporated into ε(r).
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Although the non-unique ε(r) is interesting in its own right, it is only its integral (whenever
unique) that is of physical significance. Equation (1) provides a specific instance where
this quantity should integrate to a unique physical observable. By virtue of the form of our
expression for ε(r), it is also possible to define a family of integrals over volumes smaller than
�cell that yield meaningful integrated local energy fields. Intuition dictates that the smallest
such integration volume in periodic solid-state systems is that of the WS cell, �WS , for the
system under consideration. Therefore, we define an integrated energy density of the form

ε̄(r) ≡ 1

�subcell

∫
�subcell

ε(r − r′) d3r′, (4)

where ε̄(r) is the local energy density integrated over a volume, �subcell , which is an integral
multiple of the WS cell volume centred around the reference point r. For a defect-free periodic
bulk system (even with a supercell larger than the WS cell), ε̄(r) should be a unique, constant
function in space (equal to Etot/�cell); we give a formal proof of this statement in section 3.3.
For systems with defects, deviations from constancy will provide information about the local
nature and environment of the defect. At long range, we expect ε̄(r) to recover its constant
bulk value.

We now turn our attention to the local stress tensor field, which is formally defined, by
analogy with classical elasticity theory [16], as any tensor field whose divergence is the vector
force field [4–9]:∑

α

∇ασαβ(r) = fβ(r), (5)

where σαβ(r) (α, β = x, y, z) is the non-unique stress tensor field and f(r) is the vector force
field. As with ε(r), the integral of σαβ(r) over the entire volume of the periodic supercell
results in a physical observable—in this case, the average macroscopic stress tensor [8, 9]:

σave
αβ = 1

�cell

∫
�cell

σαβ(r) d3r. (6)

We derive an expression for σαβ(r) in section 4.2 by taking the strain derivative of ε(r).
By analogy with equation (4), we define an integrated stress tensor field, σ̄αβ(r), which is
related to ε̄(r) as follows:

σ̄αβ(r) = 1

(2 − δαβ)

δε̄(r)

δεαβ

= 1

�subcell(2 − δαβ)

∫
�subcell

δε(r − r′)
δεαβ

d3r′

= 1

�subcell

∫
�subcell

σαβ(r − r′) d3r′, (7)

where εαβ is a symmetric, uniform strain and the last equality defines the microscopic stress
tensor field in the present treatment; the (2 − δαβ) factor arises from the fact that we are
interested in the symmetric stress tensor [12]. The relationships between the macroscopic
(‘global’), the local and the integrated local quantities are shown schematically in figure 1.

3. The local energy density

3.1. Reformulation of the reciprocal-space representation of the total energy

As discussed in the previous section, the construction of ε(r) requires a reformulation of the
usual expression for the total energy (equation (2)) [2] by changing the manner in which terms
are grouped [1]. This new form will facilitate the construction of the local energy field in
an intuitive manner, particularly with respect to the ion–ion interaction contribution, while
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properly treating the G = 0 divergent terms. Such a reformulation has been performed earlier
by Chetty and Martin [1], and will be reviewed in this subsection.

In the new form, the electrostatic electronic Hartree contribution and the ion–ion
interactions are treated together, with an associated modification to the local part of the
pseudopotential contribution to the total energy. The electronic kinetic energy, exchange–
correlation and non-local pseudopotential contributions to the total energy (first, third and fifth
terms in equation (2)) in the present form are identical to those in the conventional form [2].

We start with the conventional expression for the total energy, in which the ion–ion
interaction contribution (last term in equation (2)) is computed via the Ewald technique [2,17].
The Ewald method involves adding and subtracting a fictitious charge distribution composed
of Gaussians at each ionic site j (with net charge Zj ), and performing two rapidly convergent
sums, one in real space and the other in reciprocal space. The real- and reciprocal-space
representations of the fictitious charge distribution are given by

ρn(r) =
∑

j

Zj

η3

(
2

π

)3/2

e−2η2|r−τ j |2 (8)

ρn(G) = 1

�cell

e−G2/8η2
∑

j

Zj e−iG·τ j , (9)

where η is the Gaussian width. In the present study, by carefully choosing η, we make the
real-space summation negligibly small. The reciprocal-space Ewald summation is composed
of two terms [2, 17], one of which (4π�cell

∑
G |ρn(G)|2/|G|2) is identical in form to the

reciprocal-space electronic Hartree contribution to the total energy. The other is
∑

j E
self

j ,
which effectively subtracts out the energy of the self-interaction of the ionic charges with each
other. E

self

j is given by [2, 17]

E
self

j = − 2η√
π

Z2
j . (10)

By defining the total charge density, ρt (r), as

ρt (r) = ρe(r) − ρn(r), (11)

we find that the total electrostatic contribution to the total energy is given by

Ees =




4π�cell

∑
G

′ |ρt (G)|2
|G|2 +

∑
j

E
self

j (reciprocal space)

1

2

∫
�cell

∫
�cell

2ρt (r)ρt (r′)
|r − r′| d3r d3r′ +

∑
j

E
self

j (real space)

where the prime indicates that the G = 0 term is excluded from the summation; note that due
to the definition of ρt (r), the G = 0 contribution is zero. The above expressions thus account
for both the electron–electron and ion–ion interactions correctly, provided that the width of the
Gaussian functions is chosen appropriately; however, it also contains a cross term, representing
the interaction between the electrons and the Gaussian-broadened ions. Since the electron–
ion interaction must be treated using pseudopotentials, the cross term which is part of the
above expression is subtracted out while including the contribution due to the local part of the
pseudopotential (fifth term in equation (12) below).
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With all these modifications, the total energy per supercell within the LDA becomes

Etot = −
∑
nk

∫
ψ∗

nk(r) ∇2ψnk(r) d3r +
1

2

∫
�cell

∫
�cell

2ρt (r)ρt (r′)
|r − r′| d3r d3r′

+
∫

�cell

εXC(r)ρe(r) d3r +
∑

j

Enl
j +

∫
�cell

(∑
j

V loc
ion,j (|r − τ j |)

+
∫

�cell

2ρn(r′)
|r − r′| d3r′

)
ρe(r) d3r +

∑
j

E
self

j (12)

in real space and

Etot =
∑
nkG

fnk|cnk(G)|2|k + G|2 + 4π�cell

∑
G

′ |ρt (G)|2
|G|2 + �cell

∑
G

εXC(G)ρe∗(G)

+
∑

j

Enl
j + �cell

∑
G

′
ρe∗(G)

(∑
j

e−iG·τ j V loc
ion,j (G) + 8π

ρn(G)

|G|2
)

+
∑
jj ′

(
αjZj ′ − πZjZj ′

η2�cell

)
+

∑
j

E
self

j (13)

in reciprocal space. In equation (13), the cnk(G)’s denote the coefficients in the plane-wave
expansion of the wavefunction [2], and εXC(G), ρe(G) and V loc

ion,j (G) are the reciprocal-space
representations of the exchange–correlation energy per electron, the valence electronic charge
density and the local part of the pseudopotential of ion j , respectively. The fifth term in
equation (13) does not include the G = 0 contribution, which is separated out explicitly as the
sixth term. αj is the usual repulsive term given by [2]

αj = 1

�cell

∫ (
V loc

ion,j (r) +
2Zj

r

)
d3r. (14)

The reciprocal-space representation of Enl
j is given by [2]

Enl
j =

∑
nk

fnk

∑
lm

[∑
G

c∗
nk(G)e−iG·τ j V nl

lj (q)Ylm(q̂)

][∑
G′

cnk(G
′)eiG′·τ j V nl

lj (q′)Y ∗
lm(q̂′)

]

(15)

with

V nl
lj (q) = 4π√

�cell

∫ ∞

0
jl(qr)V nl

j l (r)r
2 dr, (16)

where q = k + G, the Ylm are spherical harmonics and the jl are spherical Bessel functions.

3.2. Construction of ε(r)

Using the considerations outlined in section 2 and the reformulated total energy expressions of
section 3.1 (equations (12) and (13)), we can now write down our form for the local energy field
as follows, in close correspondence with equation (13) (such that each term in the following
expression, when integrated over �cell , results in the corresponding terms in equation (13)):

ε(r) = T (r) + EH(r) + EXC(r) +
∑

j

Enl
j δ(r − τ j ) + Eloc(r) +

∑
j

E
self

j δ(r − τ j ), (17)
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where

T (r) = 1

�cell

∑
nk

fnk

∣∣∣∣
∑
G

cnk(G)(k + G)eiG·r
∣∣∣∣
2

, (18)

EH(r) = 4π
∑
G

ρt∗(G)e−iG·r
∑
G′

′ ρt (G′)
|G′|2 eiG′·r, (19)

EXC(r) =
∑
G

ρe∗(G)e−iG·r
∑
G′

εXC(G′)eiG′·r (20)

and

Eloc(r) =
∑
G

ρe∗(G)e−iG·r
∑
G′

′
[∑

j

e−iG′·τ j V loc
ion,j (G

′) + 8π
ρn(G′)
|G′|2

]
eiG′·r

+ ρe∗(G)e−iG·r
∑

j

(
αj − πZj

η2�cell

)
. (21)

Note that we have chosen to localize the ionic self-interaction contribution due to ion
j as a Dirac delta function at site j . This choice is entirely arbitrary; as in the case of the
non-local pseudopotential term, the non-uniqueness of ε(r) and the definition of ε̄(r) allow
such a procedure.

As discussed earlier, Chetty and Martin [1] specifically chose to use the Maxwell form for
EH(r) [1] in their derivation of ε(r); all other components of ε(r) are identical to ours. This
use of what amounts to two different theoretical prescriptions in computing their Hartree and
local pseudopotential contributions means that exact cancellation of the electron–fictitious ion
cross term, which is part of the Hartree term, does not occur in their case. However, as we are
ultimately interested in the integrated local energy density ε̄(r), and because the uncancelled
contribution in their case integrates to zero within the integration volumes chosen here, this
choice of one form versus another for EH(r) is not crucial.

Each of the terms in equation (17) can be efficiently calculated using fast Fourier
transform (FFT) techniques; calculation of ε(r) takes just a fraction of the time required
for a single SCF iteration.

3.3. Properties of ε(r)

Equation (4) defines the integrated local energy density, ε̄(r). In this section, we show that
the local energy density of a defect-free system (with a supercell larger than the WS cell)
when integrated over �subcell (or, equivalently, �WS), results in a gauge-independent, unique,
constant quantity, characteristic of the bulk material.

Consider a supercell calculation in which the supercell is composed of an integral
number of WS cells. Reciprocal-space quantities are based on the set of vectors {G}, where
G = lb1 + mb2 + nb3 are the reciprocal-lattice vectors, b1, b2 and b3 are the reciprocal-lattice
basis vectors for our supercell, and l, m and n are integers. An independent calculation based
on the WS cell will use the set of vectors {g}, with g = lb′

1 + mb′
2 + nb′

3, b′
1, b′

2 and b′
3 being

the reciprocal-lattice basis vectors for the WS cell, l, m and n again being integers. Clearly,
{g} is a subset of {G}.

Each of the terms in the above expression for the local energy density, except for the non-
local and the self-interaction terms, is of the form

∑
G a∗(G)e−iG·r ∑′

G b(G′)e−iG′·r, whose
integral over the volume of the WS cell yields

I =
∫

�WS

∑
G

a∗(G)e−iG·r
∑
G′

b(G′)eiG′·r d3r =
∑
G,G′

a∗(G)b(G′)
∫

�WS

e−i(G−G′)·r d3r. (22)
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Clearly, a(r) and b(r) (which are the real-space quantities corresponding to a(G) and b(G),
respectively) are periodic functions, with the periodic volumes being the WS cell in the present
case. Therefore, all Fourier components involving G-vectors not in the set {g} are zero. Thus,

I =
∑
g,g′

a∗(g)b(g′)
∫

�WS

e−i(g−g′)·r dr (23)

= �WS

∑
g

a∗(g)b(g). (24)

The above expression is simply the general term (not including the non-local and ionic self-
interaction terms) in the total energy expression for an independent calculation based on the WS
cell itself; the non-local and ionic self-interaction terms in the local energy density expression
also integrate to the corresponding terms in the total energy expression for a calculation based
on the WS cell. Thus, we have shown that the local energy density resulting from a defect-free
supercell calculation integrated over its WS cell results in the total energy of the WS cell
(EWS

tot ), and the integrated local energy density itself is equal to EWS
tot /�WS (=Etot/�cell).

The same conclusions hold when the integration volume is any integral multiple of the WS
cell volume. As mentioned earlier, in the presence of a defect, local characteristics specific
to the defect will be captured in ε̄(r), and it may be desirable to integrate ε(r) over volumes
larger than the WS cell volume, depending on the extent of the defect.

In the present study, the integration volume for the determination of local quantities was
chosen to be the cubic Bravais unit cell (consisting of four WS cells). Thus, the integrated
local energy density was determined as

ε̄(r) = 1

a3
0

∫ a0/2

−a0/2

∫ a0/2

−a0/2

∫ a0/2

−a0/2
ε(r − r′) dx ′ dy ′ dz′, (25)

where a0 is the equilibrium lattice constant. The corresponding reciprocal-space representation
is given by

ε̄(G) = sin(Gxa0/2)

Gxa0/2

sin(Gya0/2)

Gya0/2

sin(Gza0/2)

Gza0/2
ε(G), (26)

where ε(G) is the local energy density in reciprocal space. The above expression can be used
to efficiently calculate ε̄(r) using FFT techniques.

4. The local stress tensor field

4.1. The average macroscopic stress tensor

Expressions for the average macroscopic stress tensor, a physical observable and a global
quantity, defined as the differential of the total energy with respect to a uniform, symmetric
strain, εαβ , have been obtained by previous authors [8, 12, 13]. Here, for completeness (and
to compare with the integral of σαβ(r) later), we provide an alternative expression for σave

αβ

derived by starting from the reformulated total energy expression of section 3.1 (equation (13)):

σave
αβ = 1

�cell(2 − δαβ)

δEtot

δεαβ

= − 2
∑
nkG

fnk|cnk(G)|2qαqβ

+ 4π
∑′ |ρt (G)|2

G2

(
2GαGβ

G2
− δαβ

)
− 4π

∑′ ρt∗(G)

G2

δρt (G)

δG

(
2GαGβ

G2

)
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+ δαβ

∑
G

(εXC(G) − µXC(G))ρe∗(G) +
1

(2 − δαβ)

δEnl
pp

δεαβ

−
∑
jG

′
e−iG·τ j

(
δV loc

ion,j (G)

δG

GαGβ

G
+ V loc

ion,j (G)δαβ

)
ρe∗(G)

−
∑
G

′
ρe∗(G)

((
δρn(G)

δG
− ρn(G)

G

)
GαGβ

G3
+

ρn(G)

G2
δαβ

)

+

(∑
j

πZj

�2
cellη

2
− αj

�cell

)(∑
j

Zj

)
δαβ, (27)

where

1

(2 − δαβ)

δEnl
pp

δεαβ

= −
∑
nkj

fnk

∑
lm

1

Ml

[∑
G

c∗
nk(G)e−iG·τ j vlj (q)Ylm(q̂)

]

×
[∑

G

cnk(G)eiG·τ j vlj (q)

(
qα

δY ∗
lm(q̂)

δqβ

)

+
1

2
δαβvlj (q)Y ∗

lm(q̂) − v̄lj (q)Y ∗
lm(q̂)

qαqβ

|q|2
]

+ c.c. (28)

with

v̄lj (q) = 4π√
�cell

1

2l + 1

∫ ∞

0
[(l + 1)jl+1(|q · r|) − jl−1(|q · r|)]vlj (r)r

3 dr (29)

and

δV loc
ion,j (G)

δG
= − 4π

�cell

∫ ∞

0
r3j1(|G · r|)V loc

ion,j (r) dr. (30)

In determining the strain derivatives, we have used the relation [12]

1

(2 − δαβ)

δf (G)

δεαβ

= −
(

δf (G)

δG

GαGβ

G
+ f (G)δαβ

)
. (31)

The average macroscopic pressure, p, due to a uniform, symmetric strain is related to the
trace of the average macroscopic stress tensor as follows:

p = − 1
3 (σ11 + σ22 + σ33). (32)

4.2. Construction of σαβ(r)

The local stress tensor field defined in equation (5) can be obtained by term-by-term
differentiation with respect to a uniform, symmetric strain εαβ of the local energy density:

σαβ(r) = σT
αβ(r) + σH

αβ(r) + σXC
αβ (r) + σnl

j (r) + σ loc
αβ (r), (33)

where

σT
αβ(r) = −2

∑
nk

fnk

∑
G

c∗
nk(G)e−iG·rqα

∑
G′

cnk(G
′)eiG′·rqβ, (34)

σH
αβ(r) = −4π

∑
G

ρt∗(G)e−iG·r
∑
G′

′ ρt (G′)eiG′·r

G′2 δαβ

+ 4π
∑
G

ρt∗(G)e−iG·r
∑
G′

′ ρt (G′)eiG′·r

G′2

(
2G′

αG′
β

G′2

)
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− 4π
∑
G

ρt∗(G)e−iG·r
∑
G′

′ δρn(G′)
δG′

eiG′·r

G′2

(
G′

αG′
β

G′

)

− 4π
∑
G

δρn∗(G)

δG
e−iG·r

(
GαGβ

G

)∑
G′

′ ρt (G′)eiG′·r

G′2 (35)

with
δρn(G)

δG
= − 1

�cell

(
G

4η2

)
e−G2/8η2

∑
j

Zj e−iG′·τ j , (36)

σXC
αβ (r) = δαβ

∑
G

ρe∗(G)e−iG·r
∑
G′

(εXC(G′) − µXC(G′))eiG′·r, (37)

σnl
j (r) = δ(r − τ j )

(2 − δαβ)

δEnl
pp

δεαβ

(38)

and

σ loc
αβ (r) = −

∑
j

∑
G

′
ρe∗(G)e−iG·r

∑
G′

eiG′·reiG′·τ j

(
δV loc

ion,j (G
′)

δG′
G′

αG′
β

G′ + V loc
ion,j (G

′)δαβ

)

− 8π
∑
G

′
ρe∗(G)e−iG·r

∑
G′

eiG′·r
(

δρn(G′)
δG′

G′
αG′

β

G′3 +
ρn(G)

G′2 δαβ

)

+ 8π
∑
G

′
ρe∗(G)e−iG·r

∑
G′

eiG′·r
(

ρn(G′)
G′

αG′
β

G′4

)

− ρe∗(G)e−iG·r
∑

j

(
αj − πZj

η2�cell

)
δαβ. (39)

It can be verified that σαβ(r), when integrated over �cell , results in the average macroscopic
stress, σave

αβ (equation (27)).

4.3. Properties of σαβ(r)

The integrated stress tensor field, σ̄αβ(r), is defined by equation (7). For defect-free systems
subjected to a uniform strain, σ̄αβ(r) is a constant function in space equal to the average
macroscopic stress tensor, σave

αβ . Defects introduce non-uniform strains, and in such cases
σ̄αβ(r) describes the local stress concentrations.

As in the calculation of ε̄(r), we use the cubic Bravais unit cell for the determination
of the stress fields as well, with real- and reciprocal-space expressions for σ̄αβ analogous
to equations (25) and (26), respectively. In the present study, we focus on the integrated
hydrostatic pressure field, p̄(r), which is related to the trace of the stress tensor field:

p̄(r) = − 1
3 (σ̄11(r) + σ̄22(r) + σ̄33(r)). (40)

5. Results

In this section, we first present total energy results for defect-free bulk Al at equilibrium. We
then focus on two examples of defected Al: bulk Al with an isolated vacancy, and a Al(001)
surface, and examine the local energy and stress fields set up in these systems due to the defects,
using the methods outlined in sections 3 and 4.

The electronic ground state for these systems was determined self-consistently using
the Teter–Payne–Allan preconditioned conjugate gradient method [18] through the solution
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of the Kohn–Sham single-particle equations. A norm-conserving non-local pseudopotential,
transformed using the Kleinman–Bylander technique [19], was used to describe the Al cores.
For the equilibrium bulk calculations (one atom per unit cell), 28 ‘special’ k-points were used
to sample quantities within the irreducible wedge of the IBZ; 20 special k-points within the
IBZ were used for the vacancy calculation (31 atoms per unit cell) and 40 special k-points
were used for the Al(100) slab calculation (14 atoms per unit cell). All results reported here
were well converged for the above choices of Brillouin zone meshes and a plane-wave cut-off
energy of 16 Ryd.

5.1. Equilibrium bulk Al

Bulk Al exists as an fcc structure. The ground state of the system is obtained by minimizing
the total energy per atom of the fcc structure with respect to the lattice constant, and the ground
state properties are determined by fitting the theoretical values of energy and volume to an
integrated equation of state [20] (figure 2(a)). We calculate the equilibrium lattice constant and
bulk modulus to be 7.48 au and 85.3 GPa, respectively, the former being about 1.6% higher
and the latter about 5% lower than experimental determinations [21, 22]. The deviation of
the calculated properties from the observed ones are consistent with previous LDA results for
bulk Al [23]. In figure 2(b), the average macroscopic pressure values calculated directly from
first principles using equation (32) at a series of values of the lattice constant centred about
the equilibrium are compared with the pressures estimated using the integrated equation of
state [20]; as can be seen, the two curves are in excellent agreement.

5.2. Isolated vacancy in bulk Al

To demonstrate the utility of the integrated local quantities defined earlier, we consider bulk
fcc Al with a point defect, modelled using a 32-site cubic supercell with one of the sites vacant.
Figure 3 displays the valence charge density profile on a (001) plane for this supercell, with
the vacancy at the centre of the plane. Not surprisingly, there is an accumulation of electronic
charge at the bond centres, and depletion elsewhere, with the depletion most pronounced
in the vicinity of the vacancy. We calculate the unrelaxed vacancy formation energy to be
0.82 eV, in excellent agreement with the results of a recent calculation using similar methods
and supercell [24].

Figure 4 shows the integrated energy density, ε̄(r), along a (001) plane. At the boundaries
of the supercell, the energy density takes on a value corresponding to defect-free equilibrium
bulk Al, ε̄bulk (=EWS

tot /�WS), and in the vicinity of the vacancy, it increases from its bulk value
with a shape consistent with the point symmetry at the vacancy. The energy density profile
affords a means of partitioning space into a vacancy region (region of varying ε̄) and a bulk
region (region of constant ε̄). The contribution to the vacancy formation energy comes entirely
from the vacancy region; in fact, the integral of ε̄(r) − ε̄bulk in the vacancy region yields a
value of 0.82 eV in agreement with the vacancy formation energy calculated using total energy
results. The increase in ε̄(r) close to the vacancy is to be expected since the vacancy region
constitutes a region of coordination lower than the preferred 12-fold one in the bulk, and since
the overall energy cost for creating a vacancy comes from this region. That ε̄(r) recovers its
bulk value away from the vacancy indicates minimal interaction between the vacancy and its
periodic images; this is a useful diagnostic for choosing supercells that are sufficiently large
for the defect calculation.

Figure 5 portrays the integrated pressure field, p̄(r), along a (001) plane. The presence
of the vacancy causes a low-pressure region in its neighbourhood and a high-pressure region
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Figure 2. (a) Calculated total energies per WS cell for fcc bulk Al (open circles) are fitted to the
Birch equation of state [20] (solid curve); (b) pressures calculated from the equation of state fit
(solid line) of (a) are compared with those calculated directly from first principles (open circles).

just beyond the nearest-neighbour atoms. Inspection of the forces on the ionic cores also
indicates a tendency for the atoms closest to the vacancy to relax towards the vacancy. Thus,
the pressure field is consistent with the sense of the forces on the ionic cores, and also with the
intuitive picture that atoms from a bulk-like region will want to ‘flow’ into a region of lower
concentration and thereby relieve the pressure field that is generated due to the unrelaxed
vacancy. The pressure field gradually goes to zero far away from the vacancy (characteristic of
the equilibrium bulk), again indicating that the vacancies are well separated from each other.

5.3. Al(001) surface

We used a seven-layer Al(001) slab to model the Al(001) surface. The supercell in this
case consisted of 14 atoms (two atoms per layer) and the periodic slabs were separated by
three vacuum layers. The calculated surface energy for the unrelaxed slab is 69 meV Å−2,
which compares well with the experimental estimation of 71–74 meV Å−2 [25] averaged
for low-surface-energy surfaces, and an earlier LDA result of 67 meV Å−2 for the Al(001)
surface [26].

Since �subcell is again the cubic Bravais unit cell, ε̄(r) and σ̄αβ(r) are constant functions
along planes parallel to the (001) surface, and vary only along directions perpendicular to the
surface.
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Figure 3. A contour plot at four levels of constant valence charge density (in au−3) on the (001)
plane for Al with an isolated vacancy (modelled with a 32-site cubic supercell). Atoms are shown
as solid circles and the vacancy is at the centre of the plane shown.
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Figure 4. Integrated local energy density, ε̄(r) (in Ryd au−3), along the (001) plane. ε̄(r) recovers
its equilibrium bulk value (indicated by an arrow) away from the vacancy. A contour plot at
four levels of constant ε̄(r) is also shown.

Figure 6 shows the ε̄(r) profile perpendicular to the (001) surface. As can be seen, ε̄(r)

approaches its defect-free bulk value in the interior of the slab, increases from its bulk value
in the vicinity of the free surface and approaches zero away from the surface in the vacuum
region. Once again, we see that the supercell can be partitioned into bulk and surface regions.
The integral of ε̄(r) − ε̄bulk in the surface region yields the surface energy calculated above
using total energy methods, indicating that the contribution to the surface formation energy
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Figure 5. Integrated pressure field, p̄(r) (in GPa), along the (001) plane. p̄(r) recovers its
equilibrium bulk value (namely, zero) away from the vacancy. A contour plot at four levels of
constant p̄(r) is also shown.
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Figure 6. Integrated local energy density, ε̄(r), perpendicular to the (001) surface for a seven-layer
Al(001) slab. Vertical dotted lines represent (001) layers and the arrow indicates ε̄ corresponding
to defect-free bulk Al.

comes entirely from the surface region. A point of inflection in the ε̄(r) profile can be seen
about 3.7 au above the free surfaces. The origin of this feature is not clear, but it may be due
to the electron gas that leaks out of the surface.

The integrated pressure field, p̄(r), along the 〈001〉 direction for the Al(001) slab is shown
in figure 7. In the interior of the slab, p̄(r) takes on a value close to zero and characteristic
of the equilibrium bulk, whereas in the neighbourhood of the surface, it deviates from the
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Figure 7. Integrated pressure, p̄(r), perpendicular to the (001) surface for a seven-layer Al(001)
slab. Vertical dotted lines represent (001) layers.

near-zero value. Between the first and second surface layers, p̄(r) is negative and just outside
the surface layer, it is positive, indicating a propensity for the surface layer to relax inward.
However, in this case of defected Al (unlike in the case of an isolated vacancy in bulk Al),
additional features can be seen in the integrated pressure field plot (figure 7), making the above
conclusion of the surface relaxation tendency premature. In particular, interesting structure
can be seen in the ‘vacuum’ region (the region on either sides of the slab) which consists of
electron gas that has leaked out of the surface. We explore the implications of the integrated
pressure field of figure 7 in greater detail in the following section. Inspection of the forces
on the ionic cores indicates a tendency for negligible but outward relaxation; we calculate an
outward force of 0.0004 eV au−1 on the surface layer, and an inward force of 0.046 eV au−1 on
the second-layer atoms. This result is consistent with earlier theoretical calculations [26, 27]
and with experiments [14].

6. Discussion

One of the underlying motivations for the present study was to develop new theoretical tools
for the practical analysis of results from first-principles total energy calculations. Ideally, these
tools should provide an intuitive picture of the underlying quantum mechanical structure of the
system, without appealing to a single-particle orbital picture that, from a formal standpoint,
cannot be justified within ground state DFT [28]. As an illustration of this approach, we outline
the application of the pressure field, or more generally, the stress tensor field, to the analysis
of surface relaxations.

Inward or negligible relaxation of the outer layer of atoms in metallic surfaces is so
prevalent that significant outward relaxation is considered anomalous [14]. This characteristic
behaviour is most simply explained [29] in terms of satisfying the coordination requirements
of the outer-layer atoms, which have low coordination compared to the bulk atoms. The outer-
layer atoms therefore move inward toward the second-layer atoms in order to saturate their
dangling bonds. Consistent with this idea, surfaces which display negligible relaxation tend
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to be closely packed. Their atoms are already well coordinated along the surface plane, so the
driving force for inward relaxation is minimal. An alternative rationale [29] for inward surface
relaxation is provided by the Smoluchowski effect [30]. In this picture, electrons close to the
surface seek to decrease their kinetic energy by reducing the curvature of their wavefunctions.
The electrons move from directly above the surface atoms to the hollows between them, and
thus closer to the surface. This forces the ionic cores to move closer to the bulk as well.

Clearly, if these effects were the only factors governing surface relaxation, large
outward relaxations would never occur. For this reason, experimental results supporting the
existence of large outward relaxations have excited considerable theoretical interest. In some
cases, mechanisms based on first-principles calculations have been proposed to explain the
experimental results [29], but these are necessarily system-specific and cannot provide an
intuitive picture of competing effects in the general case. The present work suggests that the
pressure field may provide an alternative means for analysing a broad class of surfaces and
relaxations.

As an example, consider the Al(001) pressure field illustrated in figure 7. At first glance,
the pressure field in the vicinity of the outer surface layer and the forces on the surface and
second-layer atoms appear to indicate contrasting directions for the Al(001) surface relaxation.
This apparent contradiction can be resolved, however, by noting that:

(i) in general, the direction of the force on an atom (which is part of a larger system) and the
local pressure around the atom need not be consistent with each other; the net force on
an atom may be zero, even though the atom experiences non-zero pressures or stresses
locally1, which is precisely the case here; and

(ii) a complete picture of the various factors leading to the net force on the surface atoms
requires an examination of the pressure field not just in the immediate neighbourhood of
the outer surface, but also in the vacuum region.

Consider the pressure field illustrated in figure 7. The integrated pressure at a point r is
the microscopic pressure averaged over a cubic Bravais cell with lattice constant 7.48 au,
and centred at the reference point r. Therefore, p̄(r) for r between 0.00 and 3.74 au or
between 33.66 and 37.40 au along the 〈001〉 direction involves integration volumes consisting
purely of electron gas, and so is positive (clearly, particles with like charge enclosed in a
volume exert an outward, or positive, pressure on the volume boundaries). However, in the
region between 3.74 and 7.48 au or between 29.92 and 33.66 au, p̄(r) involves integration
volumes consisting of the electron gas in the vacuum region as well as the positively charged
surface layer atoms. The large negative integrated pressures observed in parts of these regions
represent the electrostatic attraction between the two oppositely charged entities. This leads to
a driving force for outward surface relaxation. On the other hand, positive values of p̄(r) just
outside the surface layer and negative values in the region between the outer- and second-layer
atoms represent the preference for inward relaxation of the outer-layer atoms in order to satisfy
their coordinative unsaturation. The positive values of p̄(r) in the region between 3.74 and
7.48 au are also consistent with the Smoluchowski effect [30]. In the case of Al(001), the
various driving forces for inward and outward relaxation are nearly in balance, leading to a
very small net outward relaxation. For other surfaces, the relaxations resulting from these
competing effects will be more dramatic.

In addition to aiding in understanding the driving forces underlying surface relaxations,
the stress field concept has a number of other direct applications to materials theory. It can be
used to study the mechanisms driving surface reconstructions [31], the stability of interfaces

1 A good example of a system in which the net force on each atom is zero while the pressure (locally and globally)
is non-zero is a periodic infinite solid subjected to a uniform isostatic strain.
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and interphases, and the interplay between structure and chemistry at point, line and planar
defects. Specific examples include the growth of thin films on substrates, polymer/metal
adhesion, precipitation of new phases during a phase transformation and the effect of impurity
segregation on the cohesion or embrittlement of grain boundaries.

Finally, the energy and stress tensor fields have exciting potential applications as starting
points for the development of materials models bridging scales of length and time. For example,
the energy density field provides an intuitive framework for treating a defect—be it a vacancy
or a grain boundary or a dislocation—as a spatially and energetically well-characterized quasi-
particle. This suggests the use of the energy field to construct interaction potentials for
atomistic or meso-scale defect dynamics simulations. The first-principles stress field can
likewise provide a link between microscopic and macroscopic length scales by serving as
an input to continuum models of deformation and dislocation phenomena [32]. Traditionally,
such models are based on elasticity theory [33], and consequently, breakdown occurs in regions
of plastic deformation (e.g., dislocation cores). Detailed information about the stress fields
in these regions, obtained using the methods described in this work, would bridge this gap,
and provide the potential for significant improvements in the fidelity of continuum materials
models.

7. Summary

We have proposed a new approach to the microscopic characterization of defects in periodic
systems by defining spatially varying local fields. In particular, we have identified two
quantities, the local energy density ε(r) and the local stress density σαβ(r), which yield the
total energy and the average macroscopic tensor, respectively, when integrated over the volume
of the entire supercell. Although inherently non-unique in nature, ε(r) and σαβ(r) provide
meaningful results when integrated over specific volumes, resulting in the integrated quantities,
ε̄(r) and σ̄αβ(r), respectively. In the presence of a defect, ε̄(r) and σ̄αβ(r) capture the local
chemical variations associated with the disturbance of the crystalline environment, while far
away from the defect, they recover their bulk values. These features are reflected in our results
for the test cases of bulk Al with a vacancy and the Al(001) surface. We have also outlined
potential applications of these local concepts to the characterization of surface relaxations and
in helping bridge phenomena occurring at different length scales.
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